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ABSTRACT OF THE THESIS

Classification of Wolf Call Types Using Remote Sans
Technology
by
Deborah Curless
Master of Science in Computer Science
San Diego State University, 2007

There is an increasing amount of research witlgtia of understanding wildlife
found in our environment. Observing the behavia species, including vocalizations, is
fundamental to this goal. Researchers in the biokb sciences have traditionally had to
gather their observations manually, with a greal délabor-intensive tasks. It would be
beneficial to design and build a system that autmaildy gathers and analyzes this
behavioral data.

This thesis presents such a system. Our systets @figh a remote sensor that uses
digital signal processing to automate data acgoisitThe system then sends the acquired
data to a remote lab via a high-speed wirelessar&tfor processing. Once the data is in the
lab, our system classifies the data using hidderkMamodels. The goals of this research
are to build this system with the best possiblellef performance, and to answer whether a
pattern recognition system based on hidden Markogais can classify wolf call types with
a reasonable level of success.
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CHAPTER 1

INTRODUCTION

The goal of many research studies in the biologicadnces is to understand wildlife
in our environment. Of these research projectsynaae centered around studying the
behavior of a particular animal species. Gathegavioral data, including vocalization
data, is fundamental to studying an animal’s bedravi he amount of data that these studies
require is often substantial. This can be an inmgpgask when handled manually.

By itself, collecting large amounts of data is netessarily useful unless its analysis
can produce meaningful results. One common arsatysblem is distinguishing between
classes of data. "Signal detection and classifinare necessary to provide useful
information about large acoustic datasets whicimothe effectively summarized by human
staff due to cost and time constraints.” [1]

This presents an opportunity to design and buggistem that automates the tasks of
collecting and analyzing behavioral data. The flaat the process of collecting the data can
involve many repetitive, time-consuming tasks makeseally suited for computers. For
example, signal detection is a good technique ditoraating the process of collecting
vocalization samples. Pattern recognition metluaaisbe used to solve the classification
problem. Some examples of pattern recognition oushhat have been used to automate
classification are hidden Markov models, neuraivoeks, and support vector machines.

The continuous advancement of hardware technolagyésulted in remote sensors

that are smaller, cheaper, more powerful, and mabvast. Additionally, internet
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connectivity in remote areas can provide accesat®a that would otherwise be difficult to
obtain. These innovations have contributed tdehsibility of developing such a system.

Vocal production has been described using a sditeemodel [2], where the source
is the outflow of air from the lungs through thecabfolds, and the filter is the vocal tract.
While it is generally accepted that this modelatid/for human vocal production, research
supports the idea that the source-filter modellmapplied to nonhuman mammal
vocalizations as well. According to both Titze g]d Fitch [4] the physical mechanisms
involved in vocal production across many mammactigseare very similar. The source-
filter model is based on these physical mechaniamdg therefore it is reasonable to extend
this model to nonhuman mammals. In their studyasal tract length and acoustics, Riede
and Fitch [5] apply the source-filter model to thmmestic dogCanis familiarig. Another
study by Fitch [6] on vocal tract and formant frequies in the rhesus macaqués¢aca
mulattg is based on the idea that the principles of thee-filter model and acoustic
phonetics apply to nonhuman vocalizations.

Many studies involving animal vocalizations focusaall type classification, species
classification, and speaker identification. Onglgtpresents a method for identifying
dolphin species by applying pattern recognitiomitegues to recorded vocalizations [7].
Specifically, Gaussian mixture models were usedHerclassification. Another study
investigated whether timber wolveSgnis lupu$ use variation in vocalizations as an aid in
individual recognition [8]. In a study on low-freency whale sounds, spectrogram

correlation was evaluated as a possible classticamethod [9].



1.1 STATEMENT OF THE PROBLEM
The objective of this research is to build a dmstted signal detection and

classification system to classify wolf call typesrh recordings obtained in a remote
location. Hidden Markov models are used to perftrenclassification. The goal is to
evaluate whether a pattern recognition system basdddden Markov models can classify

wolf call types with a reasonable level of success.

1.2 PURPOSE OF THE STUDY
This study is done in cooperation with the Califarwolf Center in Julian,

California. The California Wolf Center providesvery important service. Their stated
mission is “to increase awareness and conservatfforts in protecting and understanding
the importance of all wildlife and wild lands bycigsing on the history, biology and ecology
of the North American Gray Wolf through educatierhibition, reproduction of endangered
species and studies of captive wolf behavior.” [Fdsearch of wildlife and how we can
better protect it has both immediate and long4tgstienefits to our environment.

This research is significant because it may atisestesearchers and caretakers of the
wolves at the California Wolf Center. Vocalizatsoare an important part of many animals’
behavior. Being able to determine when or howdesgly certain vocalizations occur can
help to further understanding, care, and manageafahe wolves. Experts at the California
Wolf Center have described situations where audiaitaring would be useful [11]. For
example, sounds of increased aggression from ttlieyplaen new pups are present can
indicate that the pack is not accepting the litt®milarly, when wolves are put into a new

pen, aggressive sounds can indicate that the anian@lnot getting along.



As part of the design of this study, we incorpaddtaowledge from the literature
about wolf behavior as well as from local expetttha California Wolf Center. The list of
wolf call types that we attempt to classify is ged fromWolf Ethogran{12]. An ethogram

is a list of behaviors, including vocalizations,ao$pecific type of animal.

1.3 THEORETICAL BASESAND ORGANIZATION
Research shows that hidden Markov models can leéfective method for

classification of structured audio data. Whilesicommonly applied to human speech
recognition applications, it also can be effectiveesearch involving animal vocalizations.
In a comparison of bird song classification perfante between a dynamic time warping
(DTW) technique and system based on hidden Markogets, it was found that the HMM-
based system consistently outperformed the DTWebtszhnique. In particular, the HMM-
based system was better able to handle relativ®@bywonditions and calls that varied from
the stereotypical call types [13]. A study on A#m elephants used hidden Markov models
to investigate whether the vocalizations provideiflicient basis for call type classification
and speaker identification. These classificatigsteams showed reasonably successful
performance [14]. In another study, hidden Markoxdels were used to analyze
vocalizations of red dee€grvus elaphysstags [15]. In this case, the vocalizations were
found to have characteristics that could potentiatliquely identify each individual.

This paper will provide an overview of the theoratiand mathematical background
for our chosen methods of signal detection andsileation. The paper will relate that
background to the specific details of our researchect. Following will be the results of

our research and a discussion of those results.



1.4LIMITATIONSOF THE STUDY
Some limitations of the study exist. One of thstegn's components is a set of

examples of known wolf call types that are obtaibgé person listening to the wolf call and
deciding how that call should be classified. Trigcess is called manual labeling. One
potential problem with manual labeling is thasivvery subjective. Another potential issue is
that sounds that are faint or disrupted by windaaonay be difficult to classify. The
accuracy of the system depends on the consistdribg snanual labeling. Therefore, the
Wolf Ethogran{12] was used as a guide and labels were revié¢aedsure the manual
labeling was consistent.

This research only uses data collected from aailoglation, the California Wolf
Center. Itis therefore not known how differengephysical location, geography, species, or
specific animals would affect the performance ef developed system.

Studies have shown that for optimal performanaggém Markov models require a
substantial amount of training data. While the ygd training data set is not minimal, it is

possible that the results could have been imprewitdadditional training data.



CHAPTER 2
METHODOLOGY
2.1 SOUND AND SIGNAL PROCESSING

This section provides an overview of how soundra&pced and how it is
represented digitally. Sound is caused by a \itigaibject that creates a pressure wave. As
the object vibrates it causes the surrounding nuddscdo compress and rarefy. This
compression and rarefaction continue outward frieenabject until the pressure wave
reaches your eardrum. Many sounds are causeddyplex combination of vibrations
rather than a single vibrating object [16].

A sound pressure wave created by an oscillatingceatan be represented by a
sinusoid, or sine wave. The energy of the pressaxee determines the sine wave amplitude,
typically measured in decibels. The inverse weawgth of the pressure wave determines the
sine wave frequency. As many sounds are causadcbynbination of vibrations, the sound
pressure wave can be thought of as being represbptihe sum of each of the component
sine waves. Another important characteristic sinaisoidal signal is phase, which is related
to timing [17].

Based on this abstract representation of a sound,we next describe how sound is
represented digitally. The sampling theorem stiitatsan analog signal can be uniquely
recovered from the corresponding digital signdbag as the analog signal has no
frequencies above the Nyquist limit, which is ecoahalf the sampling rate. To remove
frequencies in the signal above the Nyquist linvé, apply an analog low-pass filter to the

signal. The next step is sampling which takes asmeement, or sample, of the analog signal
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at regular time intervals. This sample value repnés the amplitude of the signal at that
particular time. Finally, quantization maps thatiouous sample value to a discrete integer.
The result of these operations is a discrete sigmagisting of a sequence of integers. This
sequence is what is typically used to digitallyressent sound in an audio file [16].

As mentioned earlier, complex sounds can be decsatpmto a number of
sinusoids, each sinusoid representing a specifauatof energy at a specific frequency.
The result of this mapping to a linear combinatdsinusoids is referred to as the frequency
spectrum. A frequency spectrum can be very useftilat it allows one to examine the
amount of energy in a particular frequency rangkis can also be referred to as converting
the information from the time domain to the freqgeeedomain. There are several discrete-
frequency transforms that can convert a discrate signal into a discrete frequency
representation.

The short-time discrete Fourier Transform is onghdvansform used to decompose a
digital signal into its component digital frequersignals. A set of discrete target
frequencies from the continuous frequency spectsuobtained by dividing the frequency
spectrum into bins spaced at regular intervalse flmber of bins is governed by the length
of the sampled audio to be analyzed. More binglr@sa higher frequency resolution but
with the trade-off that the time domain resolutwili be poorer. Conversely, a smaller
number of samples in the time domain results itebéime resolution but at the expense of
frequency resolution. Once we have selected omnben of frequency bins and length of
time, we can iteratively calculate the amplitudeath of those frequencies. The formal
definition of the discrete Fourier transform fasignalxy[n] with N samples is given by the

following equation.



N-1 .
Xy[kI =Y x [nje™ ™ 0< ks N-1 (1)

n=0

Short-time Fourier analysis sequentially processesll segments of data often
referred to as frames. Mathematically this is agglished by using a window function
which is zero everywhere except for the sectiomesponding to the frame. Applying the
window function to the signal gives us each frarheame size is typically between 20 and
30 milliseconds [17]. Itis common to analyze dapping frames, which can be done by
setting a frame advance. To analyze a signal usiog time Fourier analysis, the window
function is iteratively applied to the signal, timst frame starting at the beginning of the
signal and each successive frame starting at thierdurame plus the frame advance.

The exact definition of the Fourier Transform regaiknowledge of the signal for
infinite time. Although the data in each framdiiste, the Fourier transform treats the data
as though it were one period of a continuous perisignal. The short-time discrete Fourier
transform of a signal whose period is not equah&frame length contains frequency
components not present in the original signal.s™acurrence is called spectral leakage and
is a result of the discontinuity of the signal whka frame is repeated periodically. One way
to reduce spectral leakage is to apply a windowetion such as a Hamming window prior to
transforming the signal. Once the frequency spettat each frame is calculated, the results
can be displayed in a format such as a spectrog&ectrograms allow one to visualize the
dynamics of energy distribution changes over tirmea spectrogram, time is shown on the
horizontal axis and frequency is shown on the gaktxis. Areas of higher energy are
shown as darker or are otherwise distinguishedolbyr intensity. Figure 2.1 is an example

of a wolf howl spectrogram.
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Figure 2.1 Wolf how! spectrogram.

2.2 FEATURE EXTRACTION
Feature extraction is a term used to describe hmioadata is processed before it is

given to the classification component of a pattecognition system. Feature extraction
provides several benefits. Typically the amoundath that pattern recognition applications
are required to process is very large. As mudmeadware has improved in recent years,
these applications still require a great amourtoohputational power. One benefit of
feature extraction is that it reduces the overalbant of data being processed so that the
performance in terms of speed is improved. Anobiggrefit of feature extraction is more
specific to the goal of pattern recognition apglmas, which is to be able to distinguish
between different classes of data. Ideally, fea@xtraction enhances the differences

between examples of different classes, which wglit in better accuracy in classification.



10

Filterbanks are often used in feature extractioratalio signals. The motivation for
using filterbanks is that it exploits mammals’ ifd to distinguish between closely related
frequencies. The benefit of using filterbankd isirther reduces the amount of data being
processed, resulting in faster performance. Ths&yr@move differences that are not readily
distinguishable by mammalian auditory systems. eSpe@rocessing applications commonly
use Mel filters, which are derived from the way lans perceive sounds with different
frequencies [17]. For studies that involve nonhameacalizations, more neutral filters such
as linearly spaced filters can be used effectij/gly In feature extraction, the filter is applied
to each frame's frequency spectrum.

Recall that we can model mammal call productioa asurce-filter model, where the
source is the outflow of air from the lungs through vocal folds and the filter is the vocal
tract. Given this source-filter model, it would belpful to separate the source from the filter
with the idea that the vocal tract configuratiomhie primary factor in determining the
characteristics of the sound that is produced. s€algprocessing allows us to do this by
employing the property that the convolution of tsignals is equal to the sum of the signals’
cepstrums. In cepstral processing, the “cepstigrdéfined as the inverse Fourier transform
of the log magnitude spectrum [18]. Although welld use the inverse Fourier transform to
compute the cepstrum, another discrete-frequeaagtorm called the discrete cosine
transform (DCT) is commonly used. The followingiajon shows how to calculate the real

cepstrum of a signal using the DCT.
N-1
C[k]=ZX[n]cos(nk(n+%)/ N) O0<ks<N (2)
n=0

In human speech processing applications it is comtoase only the first 12

coefficients of the cepstrum [17]. We found thgirfcreasing the number of cepstral
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coefficients to 18 resulted in better performanéecommon technique to improve the error
rate is to include the first and second derivatokthe cepstral coefficients. The first 18
coefficients with the first and second derivativesults in a 54 dimensional feature vector.

Another technique that can improve error rate gstral mean normalization. The
purpose for using cepstral mean normalization iad¢cease robustness in varying
environmental conditions [17]. In cepstral meammalization, first the cepstrum is
calculated from a signal by short time Fourier gsigl Next the mean of the cepstrum

vectors is calculated and then subtracted from gactor to so that they are normalized.

2.3 BAYESDECISION RULE
Our classification system makes use of Bayes dmtisile, also known as the

maximuma posterioriprobability (MAP) decision rule. Suppose moddig @, ... g

each represent a different class. The problem arg % solve is to choose one class that
best represents an observation. If we have no ladge about the observation, then we may
use the prior probability, which is simply to chedke class with the highest probability.

The prior probability of a modeb is written p{). The term "prior" is used because it is
before we know about the observation. If we thanehan observation sequengeve want

to choose one of these classes that is mostlyldigen that observation. This is the
posterior probability of a mod@ givenx, and is written as @ | x). This is difficult to

calculate directly, so we can rewrite this using@&arule as shown.

p(x|®) p(P) 3)

p(®|x)= p(X)

Note that pX) remains constant for all classes, so we rewnigeatbhove equation as

p(X|®)p(d®). We calculate this for each modpk}, and then choose the model that gives the
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maximum probability. Bayes decision rule minimizies overall risk with respect to a zero-

one loss function.

2.4HIDDEN MARKOV MODELS
Hidden Markov models are one of several technigoesmonly used in pattern

recognition applications. While the basic thedihidlden Markov models was published in
the late 1960’s, interest in HMMs has increased tive last couple of decades. Here we
will describe the basic theory of HMMs.

Signal models can be separated into two broad caesy deterministic and
stochastic. Deterministic models generally useesknown properties of the given signal,
while stochastic models, including hidden Markovdels, seek to characterize a signal
based on some unknown random process or procd€es [

Hidden Markov models are an extension of the Marwain, so we first give a brief
definition of a Markov chain. Consider a chairafidom events. These events could be
completely independent of each other or have degyenes on other events. In a Markov
chain, each event is dependent only on the preegast. In an observable Markov chain,
events are associated with states, and each spgsents a distribution of possible event
outcomes. Thus the observable chain of randomtevenepresented by a state sequence
[19]. Figure 2.2 is a diagram illustrating an atvsdle Markov model with 3 states.

Note that observable Markov chains have an outpligbility distribution for each
state, and the state sequence can be observedeveigwwome processes have a state
sequence that cannot be observed. By extendindefimation of Markov chains to include

chains where the state sequence is unobservablsgamadequately model those processes.
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The sequence of state transitions is not known"fidden") and also governed by a

probability distribution.
" o

O——=0
N/
O

Q)

Figure 2.2 Observable Markov mode.

state 3

To make the definition more concrete, we will désethe parameters that
characterize a hidden Markov model. In our desiompwe will used®(x, A, B) to denote a
hidden Markov model Given a number of states d={ n;} where 1< i <N is the
probability of starting in state A = { &;} where 1< i, j < N is the probability of a transition
from state to statg, andB = { bi(x) } where 1< i <N is the probability of seeing
observatiorx while in statd. Note that although the initial probabiliti@sand the state
transition probabilitied\ are separate parameters, together they chara&cthestate
sequence. Other required notation includes{X 1, X, ..., Xr } which represents an
observation sequence from time 1 to time T govehyethe parametds, andS={S,, S, ...,
Sk } which represents a state sequence governedebydtameteA. The state distributions
B can either by discrete or continuous, and wewg# a Gaussian mixture model (GMM) to
represent the distribution of our continuous feategctors. A Gaussian mixture model is a

probability distribution that includes a numbercomponent Gaussian mixtures, each with a
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mixture weight. These models are useful for regmang arbitrary distributions where a
single distribution does not adequately repredemtinderlying data. A multivariate GMM

is defined as:
M
bj(x):ZCjKN(Xlujk!ij) (4)
k=1

where N(x,p; X, ) represents a Gaussian density function with meatovp; and

covariance matrity  ci is the weight for the'kmixture associated with stgte The sum

M
of the M mixture weightsz C, » must be 1 to ensure thais a distribution.
k=1

The number of states per model is implicit in tiedlen Markov model definition.
Rabiner [19] describes two methods commonly usesdlect the number of states for a
given model. One method bases the number of statdse number of distinguishable
sounds within the signal, while the second metrsesuhe average length of time of the
observation sequences to determine the numbeatefsst When Gaussian mixture models
are used for the output distributions, the numbbenigtures must be chosen as well.

There are three common problems associated wittehitlarkov models. The first
problem is to determine the probability of a seaqueenf observations with respect to a
model. To find the probability of the observatssguence over a single state sequence path,
we compute the product of the initial state proligbhithe transition probabilities for the
path's state sequence, and the corresponding qarighability for each state in the path. The
equation for a state sequence probability is:

POI®P) = 751 8s15282s3 - 8s (T-1)sT (5)
Using the same state sequeBcéhe equation for the calculating the observaseguence

probability is:
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PX[S,®) = bg (X1) be (X2) ... bst(X7) (6)

Combining the above equations as a joint probglgiies us the probability for a specific

path, as shown here.
PX|S,®) = 7 g 8s1s285s3. - 8g1-1)sT Psa (X1) b2 (X2) ... bst(X7) (7)
As each path is a separate event and the statersagjis unknown, the probability of

an observation sequenies the sum of the probabilities of all possibléhsahrough the
model. Summing over all state sequerggs/es us the probability for this observation

given the model.

PX|®) = Z T 51 85152 8283 - .. AgT-1)sT D (X1) P2 (X2) ... bsT (X7) (8)

alls

A practical problem arises here in that this corapah has exponential complexity
because of the number of states and observatiaresegq length. We can use dynamic
programming principles to solve this problem. W# show a simple illustrative example,
and then extend that example to our actual solutkigure 2.3 shows two examples of
partial paths through a 3-state hidden Markov mo#eaep in mind that many other paths
through this model are possible. The illustrasbows that for these two particular paths,
the computations from time 1 to time 3 are idemtid@ather than recomputing these values
for each path, we can compute this value once lzrd save our computation for reuse with
other paths. This idea of storing and reusingglastbmputations is common to dynamic
programming and can efficiently solve the exporasmomplexity problem.

We can extend this idea to store partial resulesaah time for all possible paths
through each state. This method is known as ttveaim algorithm. Here we introduce a
measure called the forward probability denaigd, which is the probability of being in state

I at timet given the model and observation sequence. Tsiestiep of the forward algorithm
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is to calculate the forward probability of startiimgeach state and observiKgin that state,

as shown in the following equation.
ar(l) =zmibi(Xy) 1< i<N 9)
The next step is to iteratively evaluate the fodvarobability at time& =t + 1 until the final

timeT is reached for each state, as shown in this equati
- N - -
at(J){ZGt_l(l)aﬁ,}bj(Xt) 2<t<T;1<j<N (10)
i=1

The final step is to sum the forward probabilitidsll states in the final tim€& , as shown in

this equation.
PXI®) = Y ay(i) (11)

Ultimately, this algorithm sums the probabilitytbe observation sequence over all paths.

Partial path 1 Partial path 2

st O—sO O O | saer O—0O. O O
\ \

state 2 O O O_’O state 2 O O O\O

state 3 C_) C_) C_) C_) state 3 C_) Q C_) C_)

Figure 2.3 Partial path example.

Now suppose we want to determine which path withengiven model is most likely
to produce the observation sequence. We can guk/problem by using the Viterbi

algorithm which is similar to the forward algorithemcept that rather than finding the sum of
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all state sequence path probabilities, the gaal fsxd the single state sequence that yields
the highest probability. Here we introduce a plolitg measure given by the best-path
probability Vi(i) which is the probability of the most likely statequence at timeending in
statei. This measure only gives the probability of {hadh, not the path itself. To keep track
of the path we have a separate vari@y® that stores the state that maximizes the
probability of the path at timiein statel. For the first step in the Viterbi algorithm we
calculate the best-path probabilify(i) at timet=1:

Vi(i) = miby (Xy) 1< i<N (12)
At time 1 there is no previous state,B@) = 0.
The next step in the Viterbi algorithm is to caltel the best-path probability for each
observation, and the state at each time that gheehighest probability is stored so that the

state sequence can be reconstructed. This is simathva following equations.

Vi) = maxv, (gl (%) 2<t<T; 1<j<N (13)
B() = argmaw,_, ( } 2<t<T, 1<j<N (14)

1<i<N

Finally, the final best-path probability and state chosen. The maximum

probability is equal tanaxV,(i)]. The final state denotes is equal toarg max{V,(i)].

I<i<N 1<i<N

To reconstruct the best state sequence we canrbekkhrough the best-path states
that we saved iB(i) as shown here.
§=Bui(se)  t=T-1,T-2,...1 (15)
These values are used to give the best state ssefBens;, s, ... Sr).
The Viterbi algorithm is used to calculate the @oitities of observation sequences

for each model in a pattern recognition applicatidiris interesting that the probabilities
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calculated in the Viterbi algorithm rarely diffagsificantly from those given by the forward
algorithm. This is because of all the possiblénpathe ones that are less likely do not
contribute much to the overall probability of theservation sequence with respect to a
model.

An implementation issue arises with both decodiggr&thms. Consider the number
of factors in the equations above, and that marii@factors are probabilities which means
they are between 0 and 1. These calculations a@uidquickly result in an arithmetic
underflow. For the Viterbi algorithm, we can penothese calculations using log
probabilities and replacing the multiplication oggons by addition. This is not easily done
in the forward algorithm, in which case it is pddsito use an algorithm to scale the
probabilities such that they remain within the dyimarange of the hardware (see [17] for
details).

The third problem is an optimization problem. Givwemodel and an observation
sequence, we may want to adjust the parametehg ahodel to maximize the probability
that the model generated the observation sequéeresolve this problem we can use the
Baum-Welch algorithm. This method is sometimesedatihe forward-backward algorithm
and is an instance of the Expectation-Maximizagiekl) Algorithm.

The basic idea behind the Baum-Welch algorithno isetratively calculate the
expected probabilities related to the training @atd current model estimates, and then use a
maximum likelihood estimator to find better paraenstfor the given model. With hidden
Markov models, the missing information that we wanéstimate is the hidden state
sequence. When Gaussian mixture models are useddel the output, we also want to

estimate the hidden mixture weights. The expemagtep calculates estimates for the
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hidden information, and then the maximization stefermines new parameters based on
those estimates. The expectation and maximizateps are repeated until the model
parameters converge.

The first step in the Baum-Welch algorithm is t@oke estimates for the initial
model parameters. For the initial state distrifmutt and the transition probability
distributionA, using either random or uniform estimates is alnabstys sufficient [19]. It
is also common to start in state 1, giving anahitate distributiom = {71 = 1, 7, ... 7y = 0}
[17]. We will assume this initial state distriborti and will discuss the Baum-Welch
algorithm excludingr from the re-estimation procedures.

Good initial estimates are essential for the ouppabability distribution, particularly
when the output is a continuous distribution. WEussian mixture models are used, one
method for selecting initial estimates is to conepilie grand mean and variance for all of the
observations, and assume a single mixture. Th&&d @arameters are assigned to each
state. After a few iterations of the EM algorittine GMM parameters converge, at which
time the mixtures are split. This process repeats the number of desired mixtures is
reached.

Now that we have initial parameter estimates, wép® the expectation step. We
need to define the backward probability measur@el;(i), which gives the probability of
being in state at timet and generating the partial observation sequeice fimet+1 toT.
The backward probability calculation is shown ie tbllowing equations.

pr(i) =1 /N 1< i<N (16)

Bi(i) = iqj b (Xuy )fa(j+1)  E=T-1,T-2,..1; K i<N (17)
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For reestimating the transition probabilities, dwd be useful to determine the
probability of specific state transitions at spieciimes, given the observation and model.
This calculation includes all paths going into a@pc stata at timet, moving from state
to statg, observing X and then all paths from stgt® the end of the model. We already
have the forward probability.-1(i) to calculate the probability of all paths goimgoi stata at
timet-1. The transition probabilitg; gives the probability of the transition from state
statej. The probability of the observation s given byb;(X;). The remaining piece is the
backward probability;(j) which gives the probability of being in statat timet and
generating the partial observation sequence fromattito T. We are essentially constraining
the path probability to a specific state transi@ma specific time given the observation

sequence and model, as illustrated in figure 2.4.

-2 -1 J 1+1

output = X,

o, () o (i) B B,.\U)

From [17]

Figure 2.4 Constrained path probability.

This probability measure is denotg(, j), which gives the probability of a state

transition from statetoj at timet. The equation foxi, j) is:
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0ty (1 )aij bj (X)B.(])
> ar (K)

(i, j) = 1<i,J<N (18)
As we mentioned, the values fefi, ])) will be used to reestimate the transition
probabilities. We will use another calculatign(j,k), to reestimate the output probabilities.
Note that this calculation applies specificallymaltivariate Gaussian mixture density
functions. The calculation is similar to the constrained pathiyadaility y, but instead of a
specific state transition at a specific time we warfind the probability of a specific mixture
and state at a specific time. The probability sueel;.(j,k) represents the probability of the
observation in stateand mixturek at timet given the observation and the model. As in the
equation for(i, j), we use the forward probability.4(i), the transition probabilitg;, the
output probabilityb;(X;), and the backward probabilifij). The new component G which
gives the mixture weight for stat@and mixturek. The following equation gives the formal

definition of &.(j,k).

> a1 )ay by (X )B, ()

¢ (jk)y="2 N (19)
ZaT(i)

In the expectation step we calculate th@ ), and(.(j,k) which give us new values
for the next maximization step.

In the maximization step, we maximize the modebapaatersA andB by applying
reestimation equations to each parameter separdtakt we define the reestimation
equation forA. For eacls; we calculate the number of transitions from a statestatg,

relative to all transitions from staite The re-estimation equation for the state tréorsstis:
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th(i, i)
ZZ\A(I k)

t=1 k=1

A

a (20)

The purpose of using this equation is to find taecpntage of each specific state
transitioni to| relative to all transitions out of stategiven our observation and model. This
calculation translates to the new estimate fortiesition probability.

Next we define the reestimation equationsBarhich include reestimations of the
mean, the covariance matrix, and the mixture wsighVe have defined.(j,k) as the
probability of being in a particular mixture anatst at a specific time, given the observation
and model. We incorporate this value into thedatons for the new GMM parameters.
The mean is calculated by essentially weightindhedaservation by its contribution to the
given state and mixture before finding the obséowatean. Similarly, the covariance
parameter is calculated by using the weighted ¢anee for each observation and then
finding the overall covariance. Usidg(j,k) for timet, statg, and mixturek we have the

following reestimation equation for the GMM meardavariance.

T

¢ (1.K)x,
i:ljk =5 (21)

2.8 (ik)

t=1

A ZZt(Lk)(Xt_E‘jk )(Xt_iljk )
X, == - (22)

PRAGEY

The mixture weights parameter is calculated bydadlyi finding the contribution of
the observation within the specific state and mixtio the all mixtures within that state. The

reestimation equation for the mixture weights iSral by:
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T

2.2.(ik)

&) =2 (23)

T M

2 2.4 (ik)

t=1 k=1

The reestimation equations give the new model peiars that we will use in the
next expectation step. We repeat these stepsthatgarameters converge. Each iteration of
the EM algorithm is guaranteed to produce a modhelse probability with respect to the
training data is greater than or equal to the previteration [19]. Although there are no
known proofs of the rate of convergence, convergéntypically fast requiring no more

than 5 to 15 iterations.

2.5 SYSTEM OVERVIEW

This section gives a brief overview of the systdbetails of each component will be
addressed later. Our system is a distributed pedog system that utilizes the NSF funded
High Performance Wireless Research and Educatitwaddle (HPWREN), a high-speed
wireless network [20]. HPWREN provides wirelesteinet access to a variety of projects
that require network connectivity in remote ardgasighout San Diego, Riverside, and
Imperial counties. The HPWREN infrastructure pded the network connection between
the California Wolf Center and the Speech Procedsin at SDSU. The network topology
of HPWREN is shown in figure 2.5.

The distributed system can be divided into two npeirts: data acquisition and
classification. The data acquisition is done at@alifornia Wolf Center using a remote
sensor that is a node on HPWREN. This sensor &rdredded system with an attached
microphone that is used to record audio data. drdttan transmitting all of the recorded

data, an event activity detector identifies audignsents of interest and then transmits only
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Figure 2.5 HPWREN network topology.

those segments to the SDSU processing lab, thewiserving network bandwidth.

The classification part of the distributed systsndane at the SDSU processing lab.
Once the output from the remote sensor is transdjithe classification component
processes the data to prepare it for classificatimhthen classifies the data using pre-trained
hidden Markov models. Figure 2.6 is an illustratglhowing the distributed system and

where each processing step occurs.
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California Wolf Center SDSU
Julian, California Speech Processing Lab

v HPWREN v
data acquisition feature extraction

A\ A4

event activity detection classification

Figure 2.6 Distributed component tasks.

2.6 POPULATION OR SAMPLE
The California Wolf Center, located in Julian, @alnia, is an education and

conservation center focusing on the North AmeriGaay Wolf. There are two subspecies of
the Gray Wolf at the California Wolf Center — thé&agkan Gray Wolf and the Mexican

Wolf. Currently, the Wolf Center has 28 total wedv During most of the recordings there
were 29 wolves. Of those, 17 are Alaskan wolvekInare Mexican wolves. The Wolf
Center has six different enclosures separatingti@als into individual packs. Two
enclosures are for the Alaskan wolves, and fouf@rthe Mexican wolves. The wolves in
an individual enclosure constitute a pack. The fdaxican wolf packs have 4, 15, 2, and 2
wolves. The two Alaskan wolf packs have 15 ando®es. The largest Alaskan wolf pack
is most frequently exposed to people through edutatprograms and tours. The packs are
labeled according to their species, A for Alaskad B for Mexican, and by the enclosure

number. Table 2.1 shows the age and gender afistrébution of wolves.
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Table 2.1 Wolf Age and Gender Distribution
Pack | Ageand Gender

Al 5 females, age ranging from 2 years old to J&yeld. 10 males, age ranging from
2 years old to 16 years old

A2 1 female age 11 years old and 1 male age 12 yddr

M1 1 female age 12 years old and 1 male age 12 yddr

M2 1 female age 5 years old and 1 male age 5 yé@rs

M3 1 male age 12 years old and 2 females age & pdar

M4 4 females age 3 years old

2.7 TREATMENT

2.7.1Viper
The distributed processing system begins with iiograt the California Wolf

Center. The remote sensor at the California Welfit€r is an Arcom Viper running
embedded Linux. Itis a low-power single board pater with a 400 MHz ARM-compliant
XScale RISC processor. It has 64 MB of memoryBlflash RAM storage, 10/100baseTx
Ethernet support, and other peripheral supportiding on board audio [21]. The sensor has
an attached Labtec model Verse 524 Desktop microghdt is enclosed in a weather-
resilient container and is directly connected ® HPWREN network. Figure 2.7 shows
photos of the remote sensor. The left picture shihwe closed weather-proof enclosure. The
right picture shows the remote sensor within thelasure and a laptop attached temporarily
for testing.

At the wolf center, the sensor is centrally locatetiveen the enclosures to maximize
the number of wolf calls that are recorded. Ofrsewhen the sensor is recording, it records
any sounds that occur, not just wolf calls. Oiherdental sounds include birds and

occasional airplanes. The sensor’s central loocammetimes results in the undesired effect
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Figure 2.7 Remote sensor at the California Wolf Center.

of recording a lot of wind noise that interfereshwthe wolf vocalizations. We have a wind
shield on the microphone constructed of a wire cageunded by fake fur, which helps to

reduce the wind noise but does not eliminate it.

2.7.2 Recording
The sensor is configured with an open source softwality called bplay/brec [22]

to do the recording. The recording can eithertaged manually using HPWREN
connectivity for testing and development, or it t@nconfigured to run automatically when
the classification system is running. We recomldhdio data at 16000 Hz for the
classification system. Some data recorded earfied as training data was recorded at

44100 Hz.

2.7.3 Endpoint Detection
Audio files can be substantially large, which tal@gyer both in processing and in

network transmission. It would be advantageoutigtnguish sounds of interest (ideally,
wolf calls) from background noise. We do this waith endpoint detector using signal

processing techniques. The endpoint detectoriftessegments within the recorded audio



28
stream where signals are found. Each detectedesggeextracted from the original
recorded file and transmitted across HPWREN tdSjbeech Processing lab at SDSU.
Detecting the segments of interest and discardiedpackground noise data significantly
reduces the amount of data being transmitted dnenétwork.

Our endpoint detector is adapted from a joint piolpeetween Scripps Institution of
Oceanography and SDSU. This endpoint detectaiésbrased and uses a signal-to-noise
ratio to designate where the sounds of interest @ta stop. This SNR endpoint detector
differs from standard rule based endpoint detectotisat it uses the peak frequency energy
rather than the overall energy to determine wherthiheshold is reached.

The basic algorithm of the endpointer is to pro¢bessaudio data stream by using
short time Fourier analysis. We use 16 millisectvaches with a Hamming window, 1%
frame overlap, and a 256 point Fourier transformagtmize for speed. Our signal-to-noise
ratio threshold is 16 dB. We limit our analysisatoall bandwidth from 200 to 3500 Hz,
which is where most of the wolf calls occur. Tiuese is calculated by averaging the energy
of each frame within the specified call bandwid#eioa 30 second moving window.

The endpoint detector moves forward through thecaddta, calculating the noise
within the call bandwidth. The endpoint detectart calculates the amount of energy within
the same bandwidth at each frame and comparewithathe noise. If the difference is
above the threshold, the endpoint detector desegrthat as the start of a signal. The
endpoint detector continues to move through theocadata, comparing each frame with the
noise. When the energy falls below the SNR thrieshibat designates the end of the signal.
Detections that are shorter than .25 seconds scardied. Remaining detections are padded

by .15 seconds on either end, and then detectiatste less than .15 seconds apart are
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combined into a single detection. We extract tletected audio segments and
automatically transmit them across the network ftbenremote sensor to the SDSU

processing lab using the secure shell (SSH) prottefoned by RFC 4251 [23].

2.8 DATA ANALY SISPROCEDURES

2.8.1 Feature Extraction
After we have the extracted audio detections aSth8U processing lab, we perform

feature extraction to obtain feature vector date&clvis the basis for our classification
system. As was previously discussed, feature extrais a method that extracts information
to aid in classification while reducing the sizetloé data used in processing. A software
package that we use extensively throughout theifea&xtraction and classification is HTK
(Hidden Markov Model Toolkit) [24], an open sousxatware toolkit that is used to build
and manipulate hidden Markov models.

To perform feature extraction we use a 24 millisectrame, a 10 millisecond
advance, and a Hamming window. We apply a lindtar bank before obtaining the
cepstrum. We use 18 cepstral coefficients and ith@ade the first and second derivatives to
improve classifier performance. We also use capstean normalization to improve

performance.

2.8.2 Training
Training data is required to create hidden Markadais. Our system is a

supervised learning system, which means that wé&n»en examples of each class to train
each of the corresponding models. We based duwflidasses on the literature from

Schassburger [25] and Goodmann, et al. [12] . obotraining data, we collect examples of
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each class that we want to be able to identify,taed we manually label each of the
examples. Our list of wolf call classes is: hosdet howl, chorus howl, bark, growl, growl-
bark, whine, and yarl. A duet howl is two overlagphowls. A chorus howl is three or
more wolves howling at once. A growl-bark is argjrof barks in rapid succession that are
too close together in time to separate into indigidbarks. A whine is a repeated sound,
relatively brief, and falling in pitch. A yarl Emilar to a growl, but have higher frequencies.

Figure 2.8 shows some examples of spectrogram®lbicall types.

A
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Time e ) ot

wolf howl wolf bark wolf whine

Figure 2.8 Spectrograms of wolf calls.

There are other wolf calls in the literature sustsqueal and whimper that we
excluded because we do not have sufficient datacidel these call types. We also include
two classes that are not wolf calls. Our recorsdliftgquently include bird calls, and we
grouped those together into a bird class. Weialdade an unknown class, to group
together sounds that we record but do not spetificientify.

The process of manually labeling the data consislistening to a portion of the
recordings and manually labeling each sound aceglyli To label our data, we used an
open source audio utility called Wavesurfer [2@Javesurfer is used to open audio files and

display a graphical representation of the datah sisca spectrogram, while it plays the audio.
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It also allows the listener to save start/stop simih a text label such as 'howl' or 'bark'’
alongside the visual display.
Having a sufficient number of examples of eachslasmportant to having a good
pattern recognition system. We have 11 hourshléal data. Table 2.2 shows the number

of training and test examples we used per class.

Table2.2 Number of Examples Per Class

Class Number of Examples | Training Examples | Test Examples
howl 172 94 78
duet howl 26 11 15
chorus howl 39 22 17
bark 145 88 57
growl 95 46 49
growl-bark 91 39 52
whine 91 88 3
yarl 34 27 7
bird 824 443 381
unknown 172 82 90

After we have our labeled training data, we perféeature extraction on the data to
obtain the feature vectors that we will use tontthie models. We then apply the Baum-
Welch algorithm described earlier to train a hidt#éarkov model for each class. To do this
we use Python programs to interface with low I&4€K utilities. When the model has been
created and trained, HTK generates a file knowa m®del definition file that represents the
model. This file contains the model parameter$ sscthe transition probabilities and output

probabilities that we described earlier in the elldlarkov model overview.
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Many human speech recognition systems use HMMsathhave the same number
of states. The reason for this is that those Bystese subword-level training, and the
subword components are selected based on the nwitbequency distribution changes. In
our system we use models that each represent ina esit. Given that some call types are
typically significantly longer than others, we chds vary the number of states according the
class. As initial estimates, we assigned the nurobstates as a function of call length. We
then varied the number states to find reasonabil@&es. Table 2.3 lists the number of

states per class.

Table2.3HMM States Per Class

Class Number of states per class
howl 30
chorus howl 40
bark 10
growl 20
whine 15
yarl 15
bird 10
unknown 10

2.8.3 Classification
Recall that the remote sensor transmits candidalz ia the form of audio segments

to the SDSU processing lab. We have a Pythontdtip receives these incoming audio
segments and processes them one at a time. Thefgst performs feature extraction on
the audio segment as described earlier, and tleeXitarbi likelihood for each class is

computed. The call to the low level HTK interfaeguires parameters such as the list of
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classes/models, the HTK-generated model definitiand a grammar. The grammar
specifies sequences of permissible calls. We asshat each segment contains a single one
or more calls from the ethogram specified in secl®b.2. The MAP decision rule is used to
decide the class label. HTK generates a recogniiti® showing how the segment was

classified.
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CHAPTER 3

RESULTSAND DISCUSSION

The classifier was tested on the dataset descnibiébe previous chapter.
Experiments were conducted both using the manidglytified segmentations of calls, and a
segmentation produced by the automated call deteotiutines.

The overall accuracy of our classifier on a corpig49 manually identified test calls
is approximately 75%. Table 3.1 is a confusionrmathowing the accuracy per individual
call type. In this table, the column labeled "%reot" is the percentage of the given call
type that was correctly labeled. The column lathété error” is the percentage of

incorrectly classified calls of the given call typgative to the total number of calls.

Table 3.1 Classification Results of Manually Identified Data

classifications
grovl- chorus| duet Yo
bark | bird | growl | bark | how! | howl | howl | whine | yarl | corect | % error
bark 43 10 1] 4 0 0 a 1] ] 754 19
bird a0 417 1] 4 0 0 a 1] 1] 855 7.2
growl 4 a7 1] 5 3 0 a 1] 1] 0.0 B.5
%3 growd-bark 21 9 1] 22 0 0 a 1] 1] 423 4.0
; bzl ] 4 1] 4 5a 0 12 1] 1] 4.4 27
= |chotus howd | 0 1] 1] 1] 0 12 =] 1] 1] 0B 0.7
duat howl 1] 1] 1] 0 5 1 g 1] 1] s0.0 0.3
whine 2 1 1] 0 0 0 a 1] 1] 0.0 0.4
yarl 1 1] 1] ) 0 0 a 1] 3 429 0.5

We used 32-mixture GMMs to represent componené&aoh call type. Most calls

were represented as a single component with thepéiea of growl-barks and howl duets,
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which consisted of two more consecutive barks aviboespectively. Our HMMs have a
number of states as a function of the length otctde(see Table 3).

Wolf vocalizations vary in loudness. For examjtlés generally accepted that wolf
howls are intended for communication over distafi2zs27] and therefore are required to
be louder than other types of vocalizations. Gsoavl the other hand are intended to
communicate with wolves that are in close proximitihe result of this is that a sensor that
is well-suited for recording howls may not recottey types of vocalizations as well if it is
not in close proximity to the animals. The senssed to collect the corpus is located far
from the feeding area where the majority of gromdkines, and yarls are produced. For
these calls types, collecting more examples wghresor that is located closer to the wolves
may be beneficial. A second sensor has recendly bdded in proximity to the area in
which packs A-1 and M-4 are fed, and we are inptfoeess of collecting additional data for
these call types.

A fairly significant number of growl-barks are bgimisclassified as barks. The
structure of a growl-bark is a string of barks kxsely timed such that it may be difficult for
humans to identify the individual barks within tbedl. These misclassifications in our
system suggest that the structure of the growl-barmkponents are in fact very similar to an
individual bark.

A similar misclassification occurs with howls. Ttieee howl call types: howl, duet
howl, and chorus howl, all have similar componeritee misclassifications of these call

types are most frequently one of the other howltgpks.
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CHAPTER 4

SUMMARY, CONCLUSIONS, AND

RECOMMENDATIONS

We have implemented a distributed pattern recagmslystem using hidden Markov
models. Our system performs classification ofscptbduced by wolves at a remote
conservation, education, and breeding facility.e Témote sensor records audio data,
processes it with a signal-to-noise ratio endpdétector, and then automatically transmits
the data to the SDSU Speech Processing lab wheperi@m the classification. Under
tested conditions with low wind noise, our systeznf@grms with an accuracy rate of 75%.

Our project did not focus on hardware optimizatsunch as selection of sensors or
microphones, which would be an opportunity for e#sk. Recordings taken over a longer
period of time could potentially result in a moabust system. Our data was solely from one
physical and geographical location.

An ongoing challenge with our project has been hagavind noise that appears in
some of the recordings. Based on data obtained &roearby weather station [27] we
observed a positive correlation between a southwiest direction and the amount of wind
noise recorded. Therefore, one possible solubohdndling the wind noise would be to
automatically retrieve the wind direction and temgpidy stop recording. When the wind
direction changes then recording could resume.

There are a number of possibilities for future agsk with regard to our project.

While our current system is based on recordingsrtakimarily from one sensor, the use of
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multiple microphones or microphone arrays wouldvgte an opportunity for research in the
areas of denoising, and localizing the signal.rifgithe audio data with visual data may
provide more complete information about the wolwesich could assist in educational
programs or wolf caretaking. Studies could be damelving the seasonal or daily
behavioral patterns of wolves. A possible aregeséarch is to investigate how wolves are
impacted by the presence of anthropogenic sounds.

In recent years there has been increasing inter@gilves in the wild. Boitani [28]
describes the dramatic changes in wolf populatibr@mughout history, including the recent
history of the United States. As Europeans settiddorth America, wolves were actively
pursued with the intent of extermination. By 198{& wolf population had essentially
disappeared from the continental United StatestuRately, views have begun to change
and in the 1970's wolves were given protection utitke Endangered Species Act. In 1995
wolves were reintroduced into Yellowstone NatioRalk and central Idaho.

Although wolves are still protected in the Unitet@t®s, some populations'
designations have been recently downlisted fronaegered to threatened. The presence of
wolves remains controversial. Past and preserarelk continues to evaluate the impact of
wolves with regard to issues such as livestockeligiron, predator-prey relationships and
restoration of wolf populations.

Passive acoustic monitoring has the potential ppstt such research. For example,
a study by McDonald and Fox [29] used long-ternspasacoustic monitoring to estimate
the fin whale population. Applying passive acoustionitoring to wolf populations in the
wild could provide researchers with useful inforimatthat could further conservation and

education efforts.
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Classification of Wolf Call Types Using Remote Samechnology
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Deborah Curless
Master of Science in Computer Science
San Diego State University, 2007

There is an increasing amount of research witlgtia of understanding wildlife found
in our environment. Observing the behavior of ecsgs, including vocalizations, is fundamental
to this goal. Researchers in the biological s@erftave traditionally had to gather their
observations manually, with a great deal of lalmbensive tasks. It would be beneficial to
design and build a system that automatically gathed analyzes this behavioral data.

This thesis presents such a system. Our systeta gtigh a remote sensor that uses
digital signal processing to automate data acdgoisitThe system then sends the acquired data
to a remote lab via a high-speed wireless netwarlpfocessing. Once the data is in the lab, our
system classifies the data using hidden Markov msodEhe goals of this research are to build
this system with the best possible level of perfamoe, and to answer whether a pattern
recognition system based on hidden Markov modeisctassify wolf call types with a
reasonable level of success.



